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Estimation of reflection coefficients from
zero-off set field data

Borge Arntsen* and Bjorn Ursin‡

ABSTRACT

The classical one-dimensional (1 -D) inverse problem
consists of estimating reflection coefficients from sur-
face seismic data using the 1-D wave equation. Several
authors have found stable solutions to this problem
using least-squares model-fitting methods. We show
that the application of these plane-wave solutions to
seismic data generated with a point source can lead to
errors in estimating reflection coefficients. This diffi-
culty is avoided by using a least-squares model fitting
scheme describing vertically traveling waves originat-
ing from a point source. It is shown that this method is
roughly equivalent to deterministic deconvolution
with built-in multiple removal and compensation for
spherical spreading. A true zero-offset field data set
from a specially designed seismic experiment is then
used as input to estimate reflection coefficients. Stack-
ing velocities from a conventional seismic survey were
used to estimate spherical spreading. The resulting
reflection coefficients are shown to correlate well with
an available well log.

INTRODUCTION

The classical one-dimensional (1 -D) inverse problem con-
sists of estimating reflection coefficients from surface seis-
mic data using the 1-D wave equation. The problem has been
treated by many authors. Reviews of these works are found
in Bube and Burridge (1983) and Newton (198 1). The classi-
cal solution was given by Kunetz (1963). This solution is
however known to be unstable in the presence of noise, as
shown by Bamberger et al. (1982), who gave a stable method
based on least-squares model fitting. This work also con-
tained inversion results using real prestack surface seismic
data. Mace and Lailly (1986) showed how the same method

could be applied to a vertical seismic profile (VSP). An
example of inverting a real VSP was also given. Grivelet
(1985) applied a similar method to a real VSP data set.
Gersztenkorn et al. (1986) used a least-squares method and a
reweighted least-squares method to solve the 1-D inverse
problem; However,only synthetic data examples were
given Recently, Landro and Ursin (1988) used a least-
squares detection scheme to estimate reflection coefficients
from zero-offset field data. In one spatial dimension, only
plane waves propagating along one axis can be described,
not spherical waves originating from a point source. To use
methods based on the 1-D wave equation, some kind of
scaling of the input data must be performed. As shown by
Ursin and Bertheussen (1986) and Ursin and Arntsen (1985),
this leads to incorrect amplitudes of the multiple reflections,
which leads to incorrect estimates of the reflection coeffi-
cients. We avoid this difficulty by considering the inverse
problem of predicting reflection coefficients from vertically
traveling spherical waves in a 1-D horizontally layered
medium, taking spherical spreading properly into account.

A conventional marine seismic experiment is far from a
true zero-offset experiment, leading to difficulties when a
1-D wave equation is used to describe such an experiment
(Ursin and Bertheussen, 1986). To avoid this, a special
zero-offset marine seismic experiment was performed in an
area that is known to be approximately horizontally strati-
fied.

We approach the solution of the inverse problem with a
least-squares, model-fitting scheme. The forward modeling
is based on ray theory and is able to simulate a true zero-
offset experiment in a horizontally layered medium. The
effects of three-dimensional (3-D) spherical spreading are
included, as well as first-order multiple reflections related to
the free surface. The time used to compute the forward
model increases exponentially with the number of reflections
(Arntsen, 1988), so for practical reasons it was chosen to
include all surface multiples with three reflections (also
counting the surface reflection). Since the amplitudes of
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multiples decrease with the number of reflections (Arntsen,
1988), this should be a reasonable approximation. However,
even if higher order multiples are not detectable as single
events, they could affect the shape of the seismic signal. In
our formulation this would show up as noise in the inversion
process.

We show that the resulting inverse scheme is equivalent to
iterative inverse Wiener filtering with respect to the known
source pulse and with built-in removal of the first-order free
surface multiples and compensation for spherical spreading
and transmission losses. The inverse scheme can be straight-
forward generalized to the two-dimensional (2-D) case, by
using 2-D forward modeling based on dynamic ray tracing.
Mora (1987) gives an example of such a scheme, but wave
velocities and densities are estimated instead of reflection
coefficients. Also, only primary reflections are included in
the forward model.

The first section describes the forward ray modeling
algorithm that is used. The forward modeling is very efficient
and allows easy inclusion of spherical spreading. The second
section gives the details of the inversion algorithm. The
algorithm minimizes the difference between synthetic data
generated by ray modeling and measured field data. The
third section examines the relation between least-squares
inversion and deterministic deconvolution. The effects of
scaling data obtained with a point source to mimic plane
wave data is discussed in the fourth section, while the fifth
section describes acquisition of the zero-offset field data and
the application of the inverse algorithm to this data set.

MODELING

A medium consisting of a stack of L elastic plane layers is
considered. The stack is bounded by half-spaces at the top
and bottom, which are numbered 0 and L + 1, respectively.
Layer k is above interface k. Each layer is characterized by
the thickness Dk, P-wave velocity  and density  The
receiver and source are located in the first layer. It is
assumed that the pressure at the source position is given. As
shown by Ursin and Arntsen (1985), the elastic wave-
equation can be approximately solved by a ray series expan-
sion. The solution is valid for waves with the direction of
propagation along the vertical axis.

The pressure p at the receiver caused by a single ray can
be expressed in the following form:

p(t) = AFg(t  (1)

A is a factor containing products of reflection and transmis-
sion coefficients, while F accounts for the spherical spread-
ing. Function g is related to the wavefield at the source,
while  is the traveltime and t denotes the time.

The source function g is a sum of contributions from
waves reflected at the surface and a directly transmitted
wave:

g(t) =  +  +  +    + 

+    +  +     AT,). (2)

Element  is the source pulse, while  and  are the
contributions to the traveltime along the path from the top of
the first layer to the receiver and source positions, respec-

tively. Element  is the reflection coefficient at the surface.
The deghosted source pulse  is assumed to be known. Also
in equation (2) it is assumed that the depth of the receiver
and source are small compared to the total length of the
raypath, making it possible to neglect the difference in
spherical spreading between a reflected wave and it’s ghost
reflection from the upper boundary.

The traveltime  is given by:

L

 (3)
k=l

The sum runs over all the layers traversed by the ray.
Element  is the number of times the ray has traversed
layer  The contribution h  to the traveltime from one
layer is:

= (4)
A can be written as

 = I-I  (5)
n k

The products of the reflection coefficients  run over every
interface at which the ray has been reflected, and the
products of the transmission coefficients  run over all the
interfaces crossed by the ray. The transmission coefficients
are defined in terms of the reflection coefficients as:

 = 1  (6)

The reflection coefficients are given in terms of the density
and wave velocity:

=   1   + 1 Ck + 1 + (7)

Here  is equal to + 1 for a downgoing ray and  1 for an
upgoing ray. The function F accounts for spherical spreading
and is written

where

F = (8)

n  =   
k=l

(9)

The sum runs over all the layers traversed by the ray. The
contribution  to the spherical spreading from one
layer is

hk =  = (10)

Equation (9) can also be readily expressed in terms of the
root-mean-square (rms) velocity  :

where

L
=   (12)

k=l

The total pressure at the receiver position consists of an
infinite sum of rays. In any practical calculation, a finite set
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of rays must be selected. A reasonable selection criterion is
the number of times a given ray has been reflected (Arntsen,
1988). The number of rays grows exponentially with the
number of reflections, so only a limited number of reflections
can be included in practice. In the numerical examples
shown in the next sections, we have included primary
reflections and surface multiples reflected three times (in-
cluding the surface reflection). Any of these events will be
larger than other multiples for reflection coefficients (except
the reflection coefficient at the surface) of the order of one
tenth. However, even if higher order multiples are not
detectable as single events, they could affect the shape of the
seismic signal. In our formulation this would show up as
noise in the inversion process.

The total pressure at the receiver position can then be
written as the sum of primary reflections pP and first-order
surface multiples p M :

 =  + 

The contribution from the primary reflections is

(13)

L

 =   (14)
k=l

 = is the spherical spreading for the primary
reflection from layer  and  is the corresponding travel-
time. The amplitude Ak is given by:

k - l
 =  (15)

For first-order surface
pressure is given by:

L L

P  =  
 

=  + 
reflected at the 

multiples, the contribution tothe total

 is the spherical spreading fo
 and at interfaces  and m.

(16)

a wave

INVERSION

The observed (measured) pressure can, in general, be
regarded as a (nonlinear) function of the parameters charac-
terizing the layered medium. Using vector notation, the
relation between the observed data and the unknown param-
eters can be written:

P
obs . (17)

Here the vector pobs is the observed (measured) data, while
the pressure vector p is the forward model corresponding to
equation (1). Both the observed pressure pobs and the
forward model p are defined by the samples  and 
at time t =   

Pobs   l l l  (18)

   l *.  (19)

Here NT is the number of samples. The parameter vector in
our case is defined as:

 l .,  . .    (20)

Element  is related. to the spherical spreading of a ray
reflected at interface k [see equation (14)]. Our aim is to
solve equation (17) to obtain an expression for the parameter
vector  in terms of the observed pressure vector p.

In principle, it would be possible to estimate all three sets
of parameters, and then calculate density, P-wave velocity,
and layer thickness. However, the pressure depends on the
traveltimes via the source pulse. In realistic cases this
relationship is nonlinear, making it difficult to estimate
traveltimes, unless the traveltimes can be approximately
obtained from interpretation of the data. Often this is the
case, and then corrections to the initial traveltimes can be
calculated. This approach is used in inversion of post-stack
zero-offset data (van Riel and Berkhout, 1985). The reflec-
tion coefficients and the pressure are related in a quasi-linear
way, making it easier to obtain their estimates.

In the numerical examples to follow, the spherical spread-
ing factors are assumed to be known and are kept in constant
during the inversion process. Instead of estimating the
traveltimes, we discretize the medium in layers with equal
two-way traveltime. This reduces the number of unknown
parameters, and increases the speed of the numerical com-
putations. Then the parameter vector given in equation (20)
reduces to:

 =  . . . , (21)

Equation (17) is solved with an iterative procedure where
the time-integrated squared difference between the mea-
sured pressure and the pressure from the forward model is
minimized with respect to a set of model parameters. Math-
ematically the object function given by

T
 P    (22)

JO

is minimized with respect to  We assume that q  1
iterations have been performed and that the parameter
vector  has been estimated. The pressure p(0) can then
be expanded in a Taylor expansion around  :

     (23)
           

 is the Jacobian matrix whose elements are given by

  =    l (24)

The notation  means  The Appendix gives the
detailed expressions for the Jacobi-matrix in equation (24).
The estimate  of the parameter vector in iteration q is
then

      + . (25)

The parameter update  is found by solving equation (23)
with respect to The least-squares solution to the
problem is

    + (26)

Here I is the identity matrix and  is a damping factor,
chosenjust large enough to avoid instabilities of the solution.
Several schemes for choosing  is known, we have used an
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adaptive scheme similar to Amundsen and Ursin (1991). The
superscript T denotes transpose.

The approximate solution of equation (17) can now be
summarized in the following steps:

1) Choose an initial parameter vector  Put  = 1.
2) Compute and  by using equations (23) andand  by using equations (23) and

(24)
3) If the norm of is less than a prescribed value,is less than a prescribed value,

 is accepted as the solution. is accepted as the solution.
4) If the norm of is not small enough, a new estimateis not small enough, a new estimate

 is computed using equation (25) and (26). Increase
q by one, and repeat steps 2-4.

INVERSION CONTRASTED TO DECONVOLUTION

inverse scheme outlined in the previous section may be

spreading correction and compensation for reflection and
transmission losses. To show this a Goupillaud medium is

In this section we will show that each iteration of the
inverse scheme outlined in the previous section may be
interpreted as a deterministic deconvolution compensating
for the effects of the source pulse, followed by spherical
spreading correction and compensation for reflection and
transmission losses. To show this a Goupillaud medium is

two-way traveltime equal to the time-sampling interval At of
considered. Each layer of the medium then has a constant
two-way traveltime equal to the time-sampling interval At of
the data. It is assumed that initially all reflection coefficients
are equal to zero. The residual is then equal to  =  .
Equation (26) gives the reflection coefficients for the first
iteration as:

    + (27)

The ijth component of the Hessian matrix   is
obtained, using the results of the Appendix, as:-

      (28)

where  =  
 

 The ith component of the gradient

(29)

Equation (27) is the damped least-squares solution of the
linear equation:
Equation (27) is the damped least-squares solution of the
linear equation:

equal to one) it is seen from the Appendix that the Jacobian
matrix is given by

PP
obs obs (30)

In the plane-wave case (i.e., the spherical spreading F is put
equal to one) it is seen from the Appendix that the Jacobian
matrix is given by

      J lJ l (31)

Then equation (30) is equal to the 1-D convolutional model,Then equation (30) is equal to the 1-D convolutional model,
and equation (27) reduces to the equivalent of the well-
known system of normal equations to be solved for theknown system of normal equations to be solved for the
least-squares, zero-delay inverse filtering of the data with

other words, the matrix operator (  + XI)  J  is a
deconvolution operator transforming the data vector pobs

into the reflection coefficient vector r(l). In the sphericalinto the reflection coefficient vector r(l). In the spherical
wave case [i.e., Fp is given by equation8)] the Jacobian
matrix is equal to:matrix is equal to:

  . .    (32)

Equation (30) is no longer a convolutional model, and
equation (27) must now be interpreted as least-squares
inverse filtering with respect to the source pulse g(t), with
built-in compensation for spherical spreading.

In Figures 2 and 3 the first iteration of the inversion
algorithm is illustrated. Here spherical wave propagation is
assumed. A simple model, shown in Figure 1, consisting of a
single reflector produces data as shown in the upper trace of
Figure 2. The first event is the primary reflection and the
second event is the first surface multiple reflection. The
upper trace of Figure 3 contains the estimated reflection
coefficients after the first iteration. Since the initial model
was homogeneous (all reflection coefficients equal to zero), the
surface multiple is interpreted as a primary reflection. The
estimated reflection coefficients are seen to be obtained by
spiking deconvolution of the input data. Since the deconvolu-
tion also removes the spherical spreading in a proper way, the
result is different from a conventional deconvolution.

The second trace in Figure 2 is the difference between the
input data in the upper trace and the synthetic data generated
from the estimated model in the top trace of Figure 3.

In the second and subsequent iterations the residual is the
difference between the input and data and the synthetic data
generated in the previous iteration. Ap is then given by

=    = (2, 3 . . . ) . The reflection
coefficients are obtained as:

   +   + (33)

with the Hessian matrix J   obtained from the expres-
sions in the Appendix as: -

k=l 

L

     

=   = 189m

 = 

Depth

FIG. 1. Model used for the synthetic data example shown in
Figures 2 and 3.
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    (34)

The functions  and  arise from differentiation of
the transmission coefficients, and the detailed expressions
for these are given in the Appendix.

The gradient J is now:

FIG. 2. Input data and residuals for synthetic data example
using the model shown in Figure 1.

FIG. 3. Estimated reflection coefficients for synthetic data
example using the data in Figure 2.

      

   (35)

For easier interpretation, transmission effects are for the
moment neglected and we consider only plane waves. Then
equations (34) and (35) are simplified to:

          

          

      

(36)

(37)

Equations (36), (37), and (33) are the equations to be solved
for the least-squares, zero-delay inverse filtering of the data
with respect to the known “source pulse”    

  The second term in the “source pulse” is caused
by multiples reflected at the surface. The inverse operator
matrix (   + XI)   not only deconvolves with
respect  the source pulse  but it also removes multi-
ples explained by the present forward model.

In the more general case where spherical spreading and
transmission effects are taken into account, equations (33),
(34), and (35) must be solved for the least-squares, temporal
inverse filtering of the data with respect to the “source
pulse” and least-squares spatial inverse filtering with respect
to the spherical spreading. In all of the numerical examples
shown, this more general approach is used, so no plane-
wave assumptions are introduced.

The second iteration of the inversion algorithm is illus-
trated in Figures 2 and 3. The second trace from the top in
Figure 2 is the input residual  to the second iteration of
the synthetic example described above. The second trace from
the top in Figure 3 is the estimated update  of the
reflection coefficients. The residual has been deconvolved and
the surface multiple in the residual has been removed. The
bottom trace of Figure 3 is the sum of the top and middle traces
and is the resulting model after two iterations. The surface
multiple of the top trace of Figure 2 has now been completely
removed. The bottom trace of Figure 2 shows the difference
between the input data in the top trace and the synthetic data
generated from the model in the bottom trace of Figure 3. As is
seen, the inversion scheme converges after two iterations.

In summary, equations (33), (34), and (35) define a time-
variant deconvolution operator that deconvolves with respect
to the source pulse and surface reverberations and compen-



Zero-off set Reflection Coefficients 1639

sates for spherical spreading and transmission effects. Each
iteration of the inverse scheme can then be interpreted as
subtraction of the data generated by the forward model from
the observed data, followed by inverse filtering of the residual
with respect to the source pulse, spherical spreading, and
multiples explained by the forward model.

PLANE VERSUS SPHERICAL WAVE PROPAGATION

Since point-like sources are commonly used in seismic
data acquisition, 1-D plane-wave inverse methods must rely
on some kind of scaling of the input data. A common method
used in seismic processing is to scale the data with the
inverse of the spherical spreading for the primary reflections.
Then the observed data   is related to the scaled data

  by the equation

  (38)

The scaled data is supposed to mimic data generated by a
plane-wave source.The rms velocity  is given by
equation (12). Considering one particular primary reflection

FIG. 4. Model used for the synthetic data example shown in
Figures 6 and 7.

Velocity ratio

FIG. 5. Spherical spreading correction for a surface multiple.

arriving at time   and inserting equation (1) into the
right-hand side of equation (38) gives:

 (39)

The rms-velocity is the rms-velocity calculated
along the raypath of a primary reflection arriving at time t.
Ideally, the scaling factor  should be equal to
one for t   since the plane-wave solution is Ag(t  
When   is different from  errors are
made. If a primary reflection arrives at time t =  then at
time t =  + At the ratio  +  is larger than
one. If At is smaller than the pulse duration, then at least the
tail of the source pulse is distorted.

The amplitude of multiple reflections are also distorted
since the raypaths for primary reflections and multiple
reflections are different, leading to different  velocities.
It is easy to see this effect using the raypath and the
two-layer model shown in Figure 4. The velocity in the upper
layer is c  , while the velocity in the lower layer is c2. The
shown surface multiple arrives at time t =  Computing
the rms velocity along the raypath of the multiple and
inserting this in the denominator of equation (39) gives at
time t = 27:

       
 

(40)

The scale factor        is plotted in Figure 5 as
a function of the ratio of the velocity c  in the upper layer
and the velocity  in the lower layer. It can be seen that the
amplitude of the multiple is overestimated even for moderate
values of the ratio between the velocity in the upper and
lower layers. For inversion, it is important that amplitudes
are preserved, since one important aspect of inversion is to
extract amplitude information from the input data. Scaling
the data as in equation (38) could give incorrect estimates.

In Figure 6 a simple example of the effects of scaling on
synthetic data is shown. The top trace shows synthetic data

TIMe (Sec)

FIG. 6. Synthetic data using the model shown in Figure 4.
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generated using the simple two-layer model shown in
Figure 4. The data were generated with a point source and
have been scaled with the inverse of the spherical spreading
for the primary reflection, as given in equation (38). The
velocity in the first layer of the model used to generate the
data is 1500 m/s while the velocity in the second layer is
3000 m/s. The reflection coefficient at the interface has a
value of 0.3. The second trace from the top in Figure 6 shows
synthetic data generated from the same model as the point
source data, but with a 1-D plane-wave method. The scaled
point-source data in the top trace should be equal ideally to
the plane-wave data in the second trace. The difference
between the two traces is shown in the bottom trace and
reflects the errors in the scaling procedure. We see that the
amplitude of the primary reflection is incorrect, and that the
amplitude of the multiple reflection is two and a half times its
correct value, as predicted by equation (40).

The scaled point-source data has been used to estimate the
reflection coefficient of the model, using the inverse method
described in the previous section but with all spherical
spreading factors set equal to one. The top trace of Figure 7
shows the resulting reflection coefficients, while the second
trace shows the estimated reflection coefficient using the
unscaled point source data and taking the spherical spread-
ing properly into account. The second trace is very close to
the exact model. The result shown in the top trace using the
scaled point-source data is incorrect, since the amplitude of
the estimated reflection coefficient is larger than it should be,
and the effect of the multiple reflection has not been removed.

In most cases, errors will not be as large as this example,
since the velocity contrast would be smaller than in the
chosen example, and hence the difference between the
spherical spreading for the primary reflection and the multi-
ple reflection is smaller. Figure 8 shows the result of invert-
ing a real zero-offset trace. The data acquisition will be
described in the next section, but the result of applying a
plane-wave inversion algorithm to point-source data scaled
with the inverse of the spherical spreading for the primary

FIG. 7. Estimated reflection coefficients for plane-wave and
spherical-wave inverse algorithms using the data shown in
Figure 6.

reflections is shown on the leftmost trace. The middle trace
is the reflection coefficients resulting from inverting data
generated with a point source using the algorithm described
in the previous sections. The rightmost trace is the difference
between the two other traces. The overall difference is of the
order of  percent, and is caused by the errors made in
the scaling of the point-source data. The largest error ap-
pears at the earliest times. The spherical spreading was
computed from the rms velocities obtained from velocity
analysis of conventional seismic data shot in a survey along
exactly the same line as the zero-offset data. The rms
velocity as a function of traveltime is shown in Figure 9.

ZERO-OFFSET FIELD DATA

We wanted to run a more realistic test of the zero-offset
inversion than the synthetic data sets would allow. Conven-
tional seismic data is far from zero-offset, and using such
data would violate the basic assumptions in the forward
modeling. Another major problem was that the wavefield
close to the source had to be measured precisely. This is
hardly the case in most conventional seismic surveys. To
solve these problems, a zero-offset experiment was con-
ducted.

Figure 10 shows the geometry of the zero-offset experi-
ment. The source was a single air gun with a chamber

FIG. 8. Estimated reflection coefficients for plane-wave and
spherical-wave inverse algorithms using real data.
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volume of 9.5 L, while the receiver was a short section (15 m
long) of a conventional streamer. In the following we will
refer to this as the ministreamer. The hydrophones in the
ministreamer had a spacing of 0.7 m. With this setup, a line
was shot in the North-Sea over an area that is known to be
approximately horizontally stratified. A borehole was lo-
cated very close to the line, and the sonic and density logs
from this borehole were available. The data from a single
hydrophone on the streamer section were band-pass filtered
and resampled to a sampling interval of 8 ms. The resulting
data are shown in Figure 11. A scale factor proportional to
time was applied to the data before plotting. The shot
interval was 50 m. The source pulse was estimated from the
direct arrivals on the ministreamer.

First run

In the first run, only one trace at the borehole position was
inverted. No scaling of the data before inversion was ap-
plied. The initial model was taken to be reflection coeffi-
cients equal to zero for all times. A conventional seismic
survey had been performed along a line intersecting the
borehole. It was then possible to use rms velocities from a
conventional velocity analysis to compute the spherical
spreading factor. The inverted reflection coefficients are
shown in Figure 12. The norm of the error trace is about 0.07
times the norm of the data trace and is shown in Figure 13,
together with the input data. Both have been gained propor-
tional to time for display purposes. The resulting reflection
coefficients were obtained after three iterations. Figure 14

FIG. 9. The rms velocity as a function of traveltime used in
the example shown in Figure 8.

FIG. 10. Geometry of the zero-offset experiment. FIG. 11. The zero-offset field data.

shows the relative error between the input data and the
synthetic data as a function of iteration number.

Sonic and density logs were available, and these were
resampled and then used to compute the reflection coeffi-
cients as a function of two-way traveltime. After filtering
with a zero-phase band-pass filter, the resulting reflection
series was plotted in Figure 12. Comparing the reflection
coefficients from the log with the estimated reflection coef-
ficients, the major events correlate reasonably well. The
apparent events with large amplitudes at about 1.4 s and
1.6 s on the well-log, are caused by problems with the sonic
and density-logs and are not caused by a real reflector. The
seafloor is known to contain a double reflector, which is
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evident from Figure 12. Also the sign of the reflection
coefficient is positive, as it should be.

Second run

In the second run, eighty traces were inverted. The
resulting section of reflection coefficients is shown in
Figure 15. The reflection coefficients were only scaled by a
constant factor before plotting. The error traces are shown in
Figure 16. The error traces are scaled in the same way as the
data traces in Figure 11. Comparing the estimated reflection
coefficients with the input data, several features can be
noted. The long tail of the source signature caused by bubble
oscillations has been reduced, and the effects of spherical
spreading have, of course, been removed. However, since
the source pulse was not precisely estimated, the removal of
the tail of the pulse was not perfect and on some traces a
substantial residual remains.

CONCLUSIONS

We have given an inverse method for computing reflection
coefficients from zero offset field data. Spherical spreading is

FIG. 12. Estimated reflection coefficients and reflection co-
efficients computed from a well-log. Both traces are plotted
five consecutive times. The well-log is unreliable in the
interval below approximately 1.4 s. No log was available
above approximately 0.5 s.

FIG. 13. Data and error trace at the well position. Both traces
are plotted five consecutive times.

FIG. 14. Relative error between synthetic data and real data
as a function of iteration number.
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properly taken into account by using rms velocities from a
conventional seismic survey. This eliminates the need for
any scaling of the input data. It is shown that the least-
squares inversion can be interpreted essentially as iterative
deterministic deconvolution, with built-in spherical spread-
ing compensation and compensation for transmission ef-
fects. Only first-order surface multiples have been included
in the inverse scheme. Higher order multiples will be treated
as noise, and could degrade the results. It is straightforward
to include higher order multiples, but the computational time
increases exponentially with the number of layers and the
number of reflections. In practice a limited set of multiples
must be selected.

FIG. 15. Estimatedreflection coefficients using zero-offset
field data.

A zero offset experiment has been conducted, and the
inverse method was used to estimate reflection coefficients
from a short marine seismic line. The estimates correlate
well with reflection coefficients obtained from well logs. It is,
however, clear that a straightforward comparison is not
without problems. After all, well log measurements are
performed over intervals of the order of 10 cm, which is
much less than seismic wavelengths. Since the seismic
waves “see”another medium than the well log measure-
ments, one should expect some differences between the
estimated reflection coefficients and the reflection coeffi-
cients obtained from the well log.

Differences between the estimates and the log that are not
accounted for by differences ofscale may,in general, be

FIG. 16. Zero-offset field data error section.
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explained by inaccuracies in the forward model. In the
present example, we do not take into account change in
bandwidth with time, which will lead to estimates of the
reflection coefficients smaller than their actual value. Devi-
ations from horizontal layering would lead to unpredictable
errors in the estimates of the reflection coefficients. Errors of
this kind should be expected to be present in the estimates of
the reflection coefficients in the left part of Figure 15, since
deviations from a horizontally stratified medium are evident.
Inaccurate measurements of the source pulse would lead to
incorrect estimates of the reflection coefficients, and to fully
exploit inverse methods, better measurements of the source
pulse are very important.

Zero-offset data contain only a small part of the informa-
tion potentially found in conventional offset data. Ideally,
one should use as wide an offset range as possible in any
seismic experiment. However, the method we have pre-
sented requires much less computer resources than similar
methods that handle offset data in a 1-D medium.
(Amundsen and Ursin, 1991; Mora, 1987).

It is straightforward to generalize our inverse scheme to
the case of a 1-D plane layered medium with 3-D wave
propagation. In fact, Mora (1987) proposed such a scheme
using ray theoretical forward modeling. Only primary reflec-
tions were included in the forward model, and only synthetic
data examples were given. Mora’s objective was to estimate
wave velocities and density, which is a highly nonlinear
problem and difficult to solve. Estimating reflection coeffi-
cients is a quasi-linear problem and much easier to solve
than estimating wave velocities and density. The relation
between inversion and migration have been discussed by
Tarantola (1984). He found that the first iteration of inver-
sion is closely related to migration. However, a detailed
comparison of nonlinear inversion and migration remains to
be done, and is left for future research.
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APPENDIX A

COMPUTATION OF THE JACOBI MATRIX

The main text (equation (24)) gives the Jacobi-matrix as:

 =     

In the following it is assumed that the components of 
consist only of reflection coefficients, so that  =  If the
iteration index  is omitted, then equation (A-l) simplifies to:

ij  

The total pressure field at the receiver is given in the main
text as the sum of primary and first-order surface multiples:

 =  + 

The contribution from the primary reflections is

L

 =    (A-4)

 = is the spherical spreading for the primary
reflection from layer  and  is the corresponding 
time. The amplitude A  is given by:

k - l
 = I-I 

For first-order surface multiples, the contribution to the total
pressure is given by:

 = c  + is the spherical spreading
reflected at the surface and at interfaces  and m

for a wave
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The partial derivatives with respect to reflection coeffi-
cients of the total pressure is found by:

   + 

Inserting equations (A-4) and (A-6) into equation (A-7) one
gets:

  

L
+    

+  + 

Here,  and  are given by:

j- 1

i 

        

    

N  j - l
    (A-10)

 

Equation (A-7) is valid for   0 and  is assumed to be
known.


